Compact Hankel Operators Between Distinct Hardy Spaces and Commutators

نویسندگان

چکیده

Abstract The paper is devoted to the study of compactness Hankel operators acting between distinct Hardy spaces generated by Banach function lattices. We prove an analogue Hartman’s theorem characterizing compact in terms properties their symbols. As a byproduct we give estimation essential norm such operators. Furthermore, commutators and semicommutators Toeplitz for unbounded symbols discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators and Weak Factorization for Hardy-orlicz Spaces

We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...

متن کامل

Compact Hankel Operators on the Hardy Space of the Polydisk

We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.

متن کامل

Commutators of integral operators with variable kernels on Hardy spaces

Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...

متن کامل

Haar Shifts, Commutators, and Hankel Operators

Hankel operators lie at the junction of analytic and real-variables. We will explore this junction, from the point of view of Haar shifts and commutators. 1. Haar Functions We consider operators which satisfy invariance properties with respect to two well-known groups. The first group we take to the translation operators (1.1) Try f (x) := f (x − y) , y ∈ R . Note that formally, the adjoint ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Equations and Operator Theory

سال: 2021

ISSN: ['0378-620X', '1420-8989']

DOI: https://doi.org/10.1007/s00020-021-02668-y